
UCRL-CONF-212857

Computer Language Choices in
Arms Control and
Nonproliferation Regimes

G. K. White

June 10, 2005

46th Annual Meeting of the Institute of Nuclear Materials
Management
Phoenix, AZ, United States
July 10, 2005 through July 14, 2005

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Computer Language Choices in Arms Control and
Nonproliferation Regimes

Greg White

Lawrence Livermore National Laboratory
June 2005

Abstract

The U.S. and Russian Federation continue to make substantive progress in the arms
control and nonproliferation transparency regimes. We are moving toward an
implementation choice for creating radiation measurement systems that are
transparent in both their design and in their implementation. In particular, the choice
of a programming language to write software for such regimes can decrease or
significantly increase the costs of authentication. In this paper, we compare
procedural languages with object-oriented languages. In particular, we examine the C
and C++ languages; we compare language features, code generation, implementation
details, and executable size and demonstrate how these attributes aid or hinder
authentication and backdoor threats. We show that programs in lower level,
procedural languages are more easily authenticated than are object-oriented ones.
Potential tools and methods for authentication are covered. Possible mitigations are
suggested for using object-oriented programming languages.

1. Introduction to Authentication

As we continue to make progress towards
the development monitoring systems for
nuclear material, two important goals must be
observed: protection of the host country’s
sensitive information and the assurance to the
monitoring party that the nuclear material is
what the host country has declared it to be.
These goals are met by certification in the host
country and authentication in the monitoring
party. During both certification and
authentication, each party will need to
understand all of the operating parameters of
all hardware and software in the deployed
system. This paper will concentrate on
authentication, but similar principles apply to
certification as well.

Authentication is the process of gaining
assurance that a system is performing robustly
and precisely as it is intended. The simpler
you make the system, the easier it is to
authenticate. It is important to limit

functionality to only what is needed to satisfy
the requirements of the task. Each design
decision makes authentication easier, or
harder. For example, a design with MSDOS
(which required a 4.77 MHz processor and ran
on a single floppy disk) would be easier to
authenticate than a Windows XP installation
(which requires a 300 MHz Pentium Processor
and 1.5GB of hard disk).1 Simpler hardware,
expressed in the number of gates, chips, or
boards, is easier to authenticate than more
complex hardware. The same can be said for
software.

In my previous INMM paper2, I discussed
a hypothetical perfect system for
authentication, with transparent (to both
parties) hardware and software development,
and advocated “open source” hardware and
software solutions. In this paper, I will
advocate software language choice which
eases authentication costs.

Other industries have a similar need for
authentication. Computers which perform
electronic voting3 and gambling are two
examples.

2. Authenicating C++

C++ is an object oriented programming
language created by Bjarne Stroustrup at Bell
Labs between 1983 and 1985.4 Although a
perfectly good language for many tasks, it
severely complicates authentication over
simpler procedural languages, such as C. The
similarity in the names of the two languages
leads to the notion that C++ is just a minor
enhancement to the C language. The huge
increases in compiler complexity and code
generation in C++ is hidden from the user.

One of the primary tenets of object
oriented programming (i.e. C++) is the ability
to create hierarchies of objects and a series of
ever more complex abstractions. A simple
example of an object hierarchy would be:
living things, mammals, humans, employees,
computer nerds. C++ is harder to follow by
source code inspection, since each object and
method (i.e. function call) can be overridden
(i.e. do something completely different) at
each level of the object hierarchy.

The C linker is very simple; it binds the
actual address of external functions in an
object file. The C++ linker is actually an
extension of the compiler. When you “link” a
C++ code you may get n! invocations of the
compiler to instantiate all possible classes and
special methods.5 This is not a simple case of
one source file equals one object file. This
leads to a further, nearly humanly
unpredictable, complexity and obscurity.

C++ performs more tasks at runtime that
can hinder authentication. It requires a larger,
more complex runtime system to handle name
binding, dynamic typecasting, memory
allocation, etc. C++ (through its virtual

function facility) requires a runtime system to
bind actual functions to a particular virtual
method. Tasks which happen at runtime are
not viewable by static inspection of source and
binary code. Even an outwardly simple thing
like the allocation of space for an object can
be complicated. An object can override the
new method (which creates the object) so that
side effects (not visible at the point of
invocation) can occur. This is, in fact, how
specialized, high-speed allocators are built for
the Standard Template Library (STL, a
collection of standard functions and methods
for C++) and small-objects.

C++ generated object or assembly code is
much harder to verify than its C counterpart.
Non-optimized machine code (derived from C
source code) can (in general) be decompiled
back to something that resembles the original
C source code at least insofar as comparing it
to the original source. C++ goes through more
intermediate steps in its translation, so the
one-to-one mapping of statement to generated
code is obscured. Consider the output of a
simple C++ to C compiler like KAI6 or
cfront7. The generated C code bears little
resemblance to the original C++ code even
when compared side to side. The assembly
code is much further still from the original.

It is harder to perform authentication on
C++ source code because of compiler
intervention to build complex structures, code
motion to support inlining, and templatization
in which the compiler crafts code on the
behalf of the programmer. Additionally, the
same problem of following dynamic actions
caused by executing virtual functions means
that it is difficult to trace affects without
access and inspection of the full code base.
For all practical purposes, C++ generated
assembly code is not humanly inspectable.
This leaves only inspection of the source,
clean-room verification of compiling/linking
and functional testing as the only viable tools
for authentication.

C++ executables are (in general) larger
than the equivalent C executable. This is due
to the large number of small functions, the
necessary runtime systems to handle dynamic
binding, and an Input/Output system that is
vastly more general and larger. The simple
function “cout” (which writes characters to the
standard output device) may be between 10
and 15 levels of deep in the object hierarchy
of the iostream C++ library. In a degenerate
case, a simple program which types “Hello
World” on the screen, the C version of the
executable was 2,000 bytes, while the C++
version was 206,000 bytes. While some of
this will remain a constant size difference to
any code, some of the code expansion will be
proportional to the size of the source code.

 Even the way that programmers tend to
write code in a particular language can help or
hinder authentication. C++ tends to be written
with hundreds of small functions and methods
to build up complex abstractions. While this
aids programming, it hinders authentication.

C++ is many times harder and costlier to
authenticate by inspection. C++ is so much
more complex than C that automated tools are
practically a requirement for “proving”
correctness of C++ code. Such a tool would
need to be created or customized, as it does
not currently exist. This leaves only
inspection of the source code, clean-room
verification of compiling/linking, and
functional testing as the only viable tools for
authentication.

C++ is at least twice as costly (in time and
money) to authenticate (by inspection) as C.
Code inspection will be by guided
walkthroughs of the code. Unlike C source
code, each release of source code set in C++
must be viewed and inspected in its entirety
[i.e. if you change one file you must reinspect
all files], because of the possibility of subtle
changes in the object hierarchy (i.e. easy-to-
obscure, hard-to-handle complexity

explosion). Object oriented programming
methods are harder to follow by inspection,
because they can induce side effects. Object
oriented programming allows for code overlay
which can extend and enhance capabilities.
Inspection of subsequent version of C source
code will concentrate primarily on the
differences between the current and previous
versions.

Since the complexity of code is a function
of the number of function points (instead of
Source Lines of Code, aka SLOC). There is
3-4 times the number of function points in
C++ versus C because the language
encourages localization of effect through
small methods and attribute access functions.

Since there is a straightforward
transliteration between C and its underlying
assembly, it is harder to obscure effect in a C
program. In C++, where any operation can be
overloaded and it is less clear from the source
where an object is a value, pointer, or
reference, the translation of any operation into
associated assembly requires access and
understanding of the full source.

For example, the expression A+B in the C
language can only refer to adding some sort of
integer, float, or pointer. No side effect is
possible. One would expect to find some kind
of assembly instruction implementing the
addition. In C++, A+B can be anything. The
statement cannot be understood without fully
inspecting the implementation of the class
definitions for A and B (and if A and B can be
pointers or references, all derived classes!).
There are no automatic source code
verification systems for C++, where there are
some for C.

3. Mitigating Language Choice

A small percent of the additional
authentication costs of choosing C++ can be
reduced by imposing limitations on the

programmer. These limitations remove some
of the language features that hinder
authentication the most. Here are some
examples:

• Don’t use Virtual methods.8

• Restrict the use of overloading of
functions to help reduce name confusion

• Don’t use default arguments in functions

• Do not use overloaded operator new()
except in system and STL headers

• Do not allow dynamic casting of
pointers in C++

• Discourage the use of templatization
outside the STL.

4. Additional limitations

Even with a procedural language such as
C, some additional programmer limitations
can ease authentication:

• Encourage the use of system calls which
do not allow for buffer overflows (gets
vs fgets, strcpy vs strncpy)

• Turn off compiler optimizations

• Use only static loading, no dynamic
loading of object files or Dynamic
Loaded Libraries (DLL)

• Use a malloc() library that detects buffer
underflow and overflow [e,.g.
malloc_debug]

• Consider self-check of dynamic
executable’s MD5/SHA checksum

• Dynamic casting of C pointers should be
discouraged

• Encourage the liberal use of assertions
[e.g. design-by-contract] to verify that
pointers are non-null, type values are
consistent, etc.

• Be cautious with the use of
asynchronous signal handlers and the
“volatile” data type designation

1
http://www.microsoft.com/windowsxp/home/evaluation
/sysreqs.mspx
2 White, G., Increasing Inspectability of Hardware and
Software for Arms Control and Nonproliferation
Regimes, Proceedings of the INMM 2001 Annual
Meeting, Indian Wells, California
3 As an aside, a genius co-worker of mine stated, “If I
wanted to rig an election with an electronic voting
machine, and I could choose any computer language to
write my hide my deception in, I’d do it in C++”
4 http://www.research.att.com/~bs/C++.html
5 N factorial because each code object can request a
new pass over all other code objects to build required
templated classes and specialized methods
6 Bought by Intel in 2000 and currently being phased
out as a product.
7 The original C++ compiler developed by Bjarne
Stroustrup.
8 Although this may seem to preclude all inheritance
since C++ only allows inheritance of classes with
virtual methods, a small exception can allow one
“useless” method of the form “virtual void
useless(void) {}” to allow inheritance where required.

nijhuis2
Text Box
This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

